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The Multinomial Logistic Regression Model

Let us assume that we have a nominal outcome variable Y with d + 1
categories C1, . . . , Cd+1 depedning on k explanatory variables with given
values x1, . . . , xk. Let πj (x;β) denote the probability that Y belongs to
the category Cj for j = 1, . . . , d+1. The multinomial logistic regression
model (MLRM) is given by

πj (x;β) = Pr (Yj = 1|x) =



exp{xTβj}

1 +
∑d

l=1 exp{xTβl}
, j = 1, ..., d

1

1 +
∑d

l=1 exp{xTβl}
, j = d + 1

,

with βj = (βj0, βj1, ..., βjk)T ∈ Rk+1, j = 1, ..., d. Since the full param-
eter vector β = (βT1 , . . . ,βTd )T is d(k + 1)-dimensional, the parameter
space is Θ = Rd(k+1). Here, the vector of explanatory variables takes
the value x = (x0, x1, . . . , xk)T with x0 = 1 being associated with the
intercept βj0 for j = 1, ..., d.

Now, assume that we have observed the data on N independent in-
dividuals with associate covariate values xi ∈ Rk+1 having responses
yi = (yi1, . . . , yi,d+1)T , for i = 1, . . . , N . The most common estima-
tor of β for the MLRM is the maximum likelihood estimator (MLE), β̂,
obtained by maximizing the loglikelihood function

logL(β) =
N∑
i=1

d+1∑
j=1

yij log πj(xi;β).

The Robustness Problem

The main problem of the MLE is its lack of robustness, i.e., its poor
behaviour in the presence of outliers, which are observations that lie an
abnormal distance from other values. While a first temptation would
be that of omitting these data points, it is not acceptable to drop an
observation just because it is an outlier since we can loose important
information. Thus, we need of robust approaches to model our data.

I don’t see the logic of rejecting
data just because they seem
incredible.

Sir Fred Hoyle
1915–2001

Our approach
We define a new family of robust estimators and Wald-type tests based
on the minimum Cressie-Read φ-divergence measures, depending on
a tuning parameter λ. For λ = 0 we obtain the classical MLE and
Wald-test as a special case.

The Mammography Experience Data (I)

The Mammography experience
data, a subset of a study by the
University of Massachusetts Med-
ical School, assess factors associ-
ated with women’s knowledge, at-
titude and behavior towards mam-
mography. This study involves
412 individuals, grouped in 125
distinct covariates values and 8

explanatory variables. The re-
sponse variable ME (Mammogra-
phy experience) is a categorical
factor with three levels: “Never”,
“Within a Year” and “Over a Year”.
The groups of observations associ-
ated with covariate values xi for
i ∈ {1, 3, 17, 35, 75, 81, 102} can
be treated as outliers.

We compute the minimum φ-divergence estimators of β for λ = 0
(MLE) and λ = −0.5. Moreover, we plot the corresponding (estimated)
category probabilities for each available distinct covariate values. The
left panel of Figure 1 presents these probabilities for the first category
and λ = 0, while the right panel presents these category probabilities for
λ = −0.5.
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Figure 1:Predicted category probabilities of the response variable

The Mammography Experience Data (II)

Now, we want to evaluate the robustness of the proposed Wald-type
tests. We consider the problem of testing

H0 : βSYMPT21 = 0,
H0 : βSYMPT11 = βSYMPT21,

for the variable SYMPTr,j (“You do not need a mammogram unless you
develop symptoms: r = 1, strongly agree; r = 2, agree; r = 3, disagree;
r = 4, strongly disagree). The p-values obtained based on the proposed
test are plotted over λ in Figure 2 for both the full and the outlier deleted
data. We may reject the first hypothesis while the second hypothesis may
be accepted.
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Figure 2:p-values of the proposed Wald-type tests.

Performance of the proposed approach
Results clearly indicate the significant variation of the MLE in the
presence or absence of the outliers. However, the estimator with
λ = −0.5 is shown to be much more stable. On the other hand, test
decisions at the significance level α = 0.1 change completely in the
presence of outliers for λ near to 0.

Main conclusions
Attending to the results we can conclude that women who have never
had a mammogram are very influenziated by the thought that you
only need it in case of developing symptoms.
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